Frobenius Difference Equations and Algebraic Independence of Zeta Values in Positive Equal Characteristic

نویسندگان

  • CHIEH-YU CHANG
  • MATTHEW A. PAPANIKOLAS
  • JING YU
چکیده

In analogy with the Riemann zeta function at positive integers, for each finite field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. Our theorem asserts that among the zeta values in ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those relations within each individual family {ζr(1), ζr(2), ζr(3), . . . }. These are the algebraic relations coming from the Euler-Carlitz relations and the Frobenius relations. To prove this, a motivic method for extracting algebraic independence results from systems of Frobenius difference equations is developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Algebraic Relations among Special Zeta Values in Positive Characteristic

As analogue to special values at positive integers of the Riemann zeta function, we consider Carlitz zeta values ζC(n) at positive integers n. By constructing t-motives after Papanikolas, we prove that the only algebraic relations among these characteristic p zeta values are those coming from the Euler-Carlitz relations and the Frobenius p-th power relations.

متن کامل

Algebraic Independence of Carlitz Zeta Values with Varying Constant Fields

As an analogue to special values at positive integers of the Riemann zeta function, for each constant field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. The main theorem of this paper asserts that among the families of Carlitz zeta values ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those algebraic relations among each in...

متن کامل

Geometric Gamma Values and Zeta Values in Positive Characteristic

In analogy with values of the classical Euler Γ-function at rational numbers and the Riemann ζ-function at positive integers, we consider Thakur’s geometric Γ-function evaluated at rational arguments and Carlitz ζ-values at positive integers. We prove that, when considered together, all of the algebraic relations among these special values arise from the standard functional equations of the Γ-f...

متن کامل

Transcendence in Positive Characteristic

1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....

متن کامل

The Elementary Theory of the Frobenius Automorphisms

We lay down some elements of a geometry based on difference equations. Various constructions of algebraic geometry are shown to have meaningful analogs: dimensions, blowingup, moving lemmas. Analogy aside, the geometry of difference equations has two quite different functorial connections with ordinary algebraic geometry. On the one hand, a difference scheme is determined by geometric data, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009